
Scalable Clustering of Correlated Time Series using
Expectation Propagation

Christopher Aicher
University of Washington
Department of Statistics

aicherc@uw.edu

Emily B. Fox
University of Washington
Department of Statistics

ebfox@uw.edu

ABSTRACT
We are interested in finding clusters of time series such that
series within a cluster are correlated and series between clus-
ters are independent. Existing Bayesian methods for in-
ferring correlated clusters of time series either: (i) require
conditioning on latent variables to decouple time series, but
results in slow mixing or (ii) require calculating a collapsed
likelihood, but with computation scaling cubically with the
number of time series per cluster. To infer the latent clus-
ter assignments efficiently, we consider approximate meth-
ods that trade exactness for scalability. Our main contribu-
tion is the development of an expectation propagation based
approximation for the collapsed likelihood approach. Our
empirical results on synthetic data show our methods scale
linearly instead of cubically, while maintaining competitive
accuracy.

1. INTRODUCTION
We are interested in finding clusters of time series such

that series within a cluster are correlated and series be-
tween clusters are independent. We take motivation from
a housing application analyzed by Ren et al. [10], though
the methods are much more broadly applicable. In the hous-
ing application, the goal is to estimate house values at very
fine spatial resolutions, such as the census tract level or
finer. Housing trends vary over time and space, and the
spatial structure is very heterogeneous where neighboring
census tracts can behave quite differently. As a result, Ren
et al. simply treat the house price processes within the set of
census tracts as a collection of time series, ignoring spatial
structure. However, the census tracts cannot be analyzed
independently while still providing reasonable estimates of
house value due to the scarcity of spatiotemporally localized
house sales observations. To handle this data scarcity, Ren
et al. proposed a method for discovering groups of correlated
census tracts extending the correlated clustering model of
Palla et al. [8] to time series data. Through discovering
such a clustering of time series, one can improve estimates

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

of local trends by sharing information via a form of multiple
shrinkage.

In the housing application, the goal of inferring the clus-
tering is to improve predictive performance. This type of
clustering-of-time-series approach also proved useful in crime
forecasting [1]. In other scenarios, the goal of clustering may
be to produce an interpretable structure for understanding
the relationships between time series. There is widespread
demand for such time series clustering approaches.

Unfortunately, while the Bayesian model of Ren et al. [10]
provides performance gains over alternative approaches, a
significant limitation of the method is the complexity of the
Bayesian inference procedure. In particular, inference of the
cluster assignments of the individual time series presents a
huge computational bottleneck: each single assignment up-
date requires a likelihood computation with runtime scaling
cubicly with the number of time series per cluster. This
costly step has to be repeated for each time series and each
possible cluster assignment at each iteration of the Bayesian
inference algorithm. Unfortunately, due to the structure of
the problem, there are no opportunities for sharing compu-
tations between steps.

More specifically, to perform Bayesian inference of the
cluster assignments, a Gibbs sampler is used to iteratively
draw the assignments and other parameters from the pos-
terior. Standard implementations of Gibbs sampling are
known to exhibit poor performance (slow mixing) when in-
ferring a large number of parameters [13]. To overcome this
slow mixing of the naive Gibbs sampler, Ren et al. [10] devel-
oped a collapsed Gibbs sampler that analytically marginal-
izes a large portion of the parameter space, but induces
dependencies between series previously decoupled (via la-
tent processes) in the uncollapsed model. Importantly, the
resulting collapsed model still maintains tractable time se-
ries structure: a multivariate state space model per cluster.
When resampling the cluster assignment for a given time
series, a Kalman filter can be run to compute the likelihood
of the series under a given cluster assignment. But, the
Kalman filter has complexity scaling cubicly with the state
dimension of the cluster. As a result, the resampling step,
for just a single update to a given cluster assignment, has
complexity O(KN3

maxT), where K is the number of clus-
ter, T is the number of time points, and Nmax is the max-
imum cluster size. This computationally intensive step has
to be repeated for each time series at each iteration. As a
result, although the naive Gibbs sampler mixes slowly (i.e.,
takes many iterations), the collapsed Gibbs sampler has pro-
hibitively slow runtimes for moderate to large cluster sizes,

xi,t-1

yi,t-1

ηk,t-1

xi,t

yi,t

ηk,t

xi,t+1

yi,t+1

ηk,t+1

Figure 1: Graphical model for Eq. (4) for a single time se-
ries yi with zi = k. Conditioned on the set of zi and ηk,
each time series evolves independently. (The sharing of ηk
between series in a cluster implicitly correlates the series.)

obviating the potential gains of collapsing. We demonstrate
these effects in our experiments.

For tractable inference, we instead consider approxima-
tions to the collapsed likelihood that trade exactness for
scalability. Existing methods for scaling Bayesian inference
with the size of the data, such as stochastic variational infer-
ence [4] or Firefly MCMC [6], require independence between
observations; however our model’s observations are depen-
dent within clusters after integrating out cluster latent vari-
ables. This is a common occurrence in models where collaps-
ing emission parameters is common practice, like in latent
Dirichlet allocation (LDA), or other mixture models with
large parameter spaces. As such, the methods we develop
in this paper are more broadly applicable than just to the
specific dynamic model considered.

To handle the dependencies between observations, we de-
velop two orthogonal methods: one based on subsampling
and another based on expectation propagation [7]. We also
present a combined method, expectation propagation with
subsampling, that combines the insights of both. The three
of methods all scale linearly in the number of time series
per cluster. Our synthetic experiments find that both EP-
based samplers mix as well as collapsed Gibbs in terms of
performance versus number of iterations, while significantly
outperforming collapsed Gibbs in terms of runtime.

The rest of the paper is organized as follows. We first
present the model for correlated time series clusters. We
then review naive and collapsed Gibbs samplers and present
our approximate samplers. Finally, we analyze the trade-off
between runtime and accuracy in synthetic data.

2. MODEL FOR TIME SERIES CLUSTERS
Let y = {yi ∈ RT }Ni=1 be a collection of N observed time

series. Here, we assume that each series yi is of length T ,
but our formulation can more generally apply to collections
of time series of different lengths.

We additionally assume for each series i that yi are noisy

observations of a latent AR(1) process xi ∈ RT .

xi,t = aixi,t−1 + εi,t εi,t ∼ N (0, σ2
i,t)

yi,t = xi,t + νi,t νi,t ∼ N (0, σ2
yi) (1)

where ai ∈ R is the AR coefficient for xi.
Each series yi has a latent cluster assignment zi ∈ 1, . . . ,K

such that the latent process noise ε is correlated within clus-
ters and independent between clusters. To capture this, Ren
et al. [10] propose

εi,t = λiηzi,t + ε̃i,t ε̃i,t ∼ N (0, σ2
x) , (2)

where ηk,t ∼ N (0, 1) is the latent factor process for cluster k
and λi ∈ R are the factor loadings. Therefore, the covariance
matrix of εt = (ε1,t, . . . , εK,t sorted by cluster assignment is
block diagonal, since

Cov(εi,t, εj,t | λ, z) =

{
λiλjσ

2
ηk + σ2

x1i=j if zi = zj = k

0 otherwise.

(3)
Combining Eq. (1) and (2), an equivalent representation for
the series dynamics is

xi,t = aixi,t−1 + λiηzi,t + εi,t

yi,t = xi,t + νi,t . (4)

The graphical model of the random variables y, x, z, η de-
scribed in Eq. (4) is visualized in Figure 1.

Figure 2 is an example of synthetic data generated from
the model. Note that series within each cluster do not neces-
sarily follow a mean trend, but are instead correlated. This
represents

Priors
Taking a Bayesian approach, we assign priors to our model
parameters and latent variables.

Ren et al. [10] take a nonparameteric and hierarchical
Bayesian approach. To focus our analysis on the effects of
different likelihoods on sampling z, we treat the AR coeffi-
cients a1:N , factor loadings λ1:N , and noise variances σ2

y, σ
2
x

as known. We additionally fix K and place a Dirichlet-
multinomial prior over z for simplicity

zi | p ∼ Multinomial(1, p) p ∼ Dirichlet(α) , (5)

where α ∈ Rk+ is the hyperparameter of the Dirichlet prior.
One can analytically marginalize the cluster weights p and

compute the conditional distribution of a cluster assignment
zi given the other cluster assignments z−i

Pr(zi = k | z−i, α) ∝ (Nk − 1) + αk , (6)

where Nk is the number of series in group k.

3. INFERENCE
We are interested in scalable methods of inference of the

latent cluster assignments z1:N .
We first present both naive and collapsed Gibbs sampling.

Then we present our approximate methods based on sub-
sampling and expectation propagation.

Although indefinitely repeating steps of these approxi-
mate samplers does not guarantee convergence to the ex-
act posterior, they can be viewed as part of an adaptive
MCMC scheme where these efficient but approximate steps
are gradually faded out. The results of such an adaptive
MCMC scheme converge to the exact posterior.

0 10 20 30 40 50
T

30

20

10

0

10

20

30

Y
30
20
10

0
10
20
30

30
20
10

0
10
20
30

30
20
10

0
10
20
30

30
20
10

0
10
20
30

0 10 20 30 40 50
30
20
10

0
10
20
30

Figure 2: Synthetic data from the model: raw data (Left), separated by cluster (Right)

3.1 Gibbs Samplers

3.1.1 Naive/Standard Gibbs
A naive (or standard) Gibbs sampler draws samples (z, η)

by iterating the following two steps

• For i = 1 : N ,

zi ∼ Pr(zi | y, z−i, η1:K) (7)

• For k = 1 : K,

ηk ∼ Pr(ηk | y, z1:N , η−k) . (8)

Recall that to focus on the sampling of z, we fix all other
model parameters that would otherwise be sampled.

We are interested in the computational cost of sampling
z. Due to the conditional independence of z and y given
η under out model, the full conditional for zi in Eq. (7)
simplifies to

Pr(zi = k | y, z−i, η) ∝ Pr(zi = k | z−i) Pr(yi | ηk) , (9)

which consists of a prior term and likelihood term. To cal-
culate the full conditional, we must normalize the product
of the prior and the likelihood for each cluster assignment
zi = k.

The prior term Pr(zi = k | z−i) is calculated from Eq. (6)
and takes O(N) time. The likelihood term

`naivei (zi = k | η) = Pr(yi | ηk) , (10)

can be calculated by running a Kalman filter on series yi
alone[2], with a slight modification to account for the fixed
mean term λiηk. For each cluster k in 1 : K we calculate

`naivei (zi = k | η) =

T∏
t=1

Pr(yi,t | ηk, yi,1:t−1) , (11)

which has a runtime complexity of O(T). Therefore, sam-
pling zi for each series i has a runtime complexity of O(TK).

Altogether, sampling z1:N with naive Gibbs takesO(TKN)
time. This is linear in N . Unfortunately, the naive Gibbs
sampler has slow mixing: A poor initialization z leads to
poor estimates of η and vice-versa, requiring many itera-
tions of the sampler to explore the posterior well.

3.1.2 Collapsed Gibbs
To improve the convergence of naive Gibbs, collapsed Gibbs

samples the latent cluster assignments z from the conditional
posterior after analytically integrating out η

zi ∼ Pr(zi | y, z−i) . (12)

Because the distribution of zi is not conditioned on the sam-
pled η1:K , collapsed Gibbs (Eq. (12)) should mix in fewer
iterations than naive Gibbs (Eq. (7)).

However, the computational cost of sampling z now re-
quires collapsing out η1:K in the likelihood calculation.

The sampling distribution over z in Eq. (12) still factorizes
into a prior and likelihood term

Pr(zi | y, z−i) ∝ Pr(zi | z−i) Pr(yi | y−i, z) , (13)

but with a new ‘collapsed’ likelihood term that integrates
out η.

`i(zi = k) = Pr(yi | y−i, z) =

∫
Pr(yi | ηk) Pr(ηk | y−i, z−i) dηk .

(14)
The collapsed likelihood is the expected value of the naive
likelihood with respect to the posterior of ηzi given the ob-
servations and cluster assignments of other series y−i, z−i.

Figure 3 shows the dependencies induced by collapsing
out η for one cluster.

Unfortunately, it is intractable to compute the integral in
Eq. (14) as the posterior of ηk ∈ RT is a full multivariate
Gaussian. Direct integration would require O(T 3) time.

One of the key results of Ren et al. [10] was to exploit
the time series structure of the model (see Figure 3) to com-
pute `i using a Kalman filter, but now on the collection of
time series in a cluster. From the definition of conditional
probability

`i(zi = k) = Pr(yi | y−i, z) =
Pr({yj : zj = k})

Pr({yj : zj = k and j 6= i}) .

(15)
For each potential cluster assignment zi = k, the likelihood
term now requires running the Kalman filter not only on the
vector yi but all series yj in the same cluster (zj = zi = k).
As the Kalman filter scales cubically in the dimension of the
state vector [2], if Nk is the number of series in cluster k,
then the computational complexity to calculate `i(zi = k)
is O(TN3

k). Thus the running time for calculating the full

x1,t-1

y1,t-1

x2,t-1

y2,t-1

xm,t-1

yn,t-1

x1,t

y1,t

x2,t

y2,t

xm,t

yn,t

x1,t+1

y1,t+1

x2,t+1

y2,t+1

xm,t+1

ym,t+1

Figure 3: Graphical model for Eq. (4) where η is collapsed.
Here we depict all series within a single cluster k, which in
Figure 1 all shared the same ηk. The result of marginalizing
ηk is the coupling between the xi,t depicted here. This is
explicitly specified by the covariance in Eq. (3).

conditional pmf for zi for each of its K possible values is
O(TK(maxNk)3).

Altogether, sampling the cluster assignments for all series
z1:N with collapsed Gibbs takes O(TKN(maxNk)3) time.
Although collapsed Gibbs sampling improves upon the mix-
ing, the cubic-scaling running time is intractable when the
Nk is large and means fewer iterations of the algorithm given
a fixed amount of time, limiting the theoretical gains of col-
lapsing.

3.2 Approximate Samplers
We now consider approximations for the likelihood com-

putation in collapsed Gibbs that trade exactness for signifi-
cant computational speed-ups.

3.2.1 Subsampling
The problem with collapsed Gibbs sampling is its cubic

scaling for large cluster sizes Nk. To reduce the complexity
of calculating the collapsed likelihood `i(k) when Nk is large,
one simple idea is to artificially reduce Nk by subsampling
the data. For example, to assign a new series to a cluster,
it may suffice to only consider a subset of observed series
from each cluster. Visually, examine Figure 2 and imag-
ine dropping half the time series in each cluster. One could
probably still do reasonably well for most subsample halves.
This idea is similar to ideas in sparse regression Gaussian
process literature [9] and firefly MCMC[6], where we reduce
the likelihood calculation complexity by dropping some like-
lihood terms.

For each potential cluster assignment zi = k, instead of
conditioning on all series in the cluster {yj : zj = k}, we
condition on a random subsample of the series assigned to
cluster k

`subi (zi) = Pr(yi | yJ) =
Pr(yi, yJ)

Pr(yJ)
(16)

where yJ ⊂ {yj : zj = zi and j 6= i}.
This subsampled likelihood approximation is equivalent

to calculating

`subi (zi = k) =

∫
Pr(yi | ηk) Pr(ηk | yJ) dηk , (17)

where Pr(ηk | yJ) is the posterior for ηk condition on the
subset of series yJ .

The complexity for calculating `subi is the same as the
collapsed Gibbs sampler, replacing Nk with the size of yJ .
In practice, we set an upper bound M for the size of our
random subsample yJ ; therefore our total running time is
O(TKNM3).

This likelihood and resulting posterior are equivalent to
the exact approach if yJ is sufficient for {yj : zj = zi}; how-
ever as yJ is chosen randomly, this is unlikely in general.
Replacing `i with `subi in the collapsed Gibbs sampler leads
to a different stationary distribution than the true posterior.
Because `subi integrates over a posterior conditioned on less
data (compare Eq. (17) and Eq. (14)), this new stationary
distribution may be more diffuse than the exact posterior.
The hope is that yJ is large enough to be ‘approximately’
sufficient for {yj : zj = zi}, but small enough to be compu-
tational fast to calculate.

3.2.2 Expectation Propagation
Expectation propagation (EP) [7, 11] is an alternative

method for reducing the complexity of calculating the col-
lapsed likelihood.

Recall the collapsed likelihood can be represented as the
integral over the posterior of ηzi given y−i, z−i

`i(zi = k) =

∫
Pr(yi | ηk) Pr(ηk | y−i, z−i) dηk , (18)

but is intractable to compute as the posterior of η ∈ RK×T
has a full multivariate Gaussian density

Pr(η | y−i, z−i) = π−i(η) = π(η)
∏
j 6=i

sj(η) (19)

where π(η) = N (η|0, diag(σ2
η)) and sj is the likelihood for η

given yj , zj

sj(η) = Pr(yj | ηzj) ∝ N (ηzj | µj ,Σj) , (20)

which is a full multivariate Gaussian.
The EP idea is to approximate the likelihood terms sj ,

such that the approximate posterior for η has the same form
as its prior: a diagonal Gaussian. By approximating sj with
diagonal Gaussians, Eq. (18) becomes a tractable integral
over a diagonal Gaussian posterior.

Let tj(η) be the diagonal Gaussian approximation of sj(η).
Then define q−i to be the approximate posterior of π−i(η)

q−i(η) ∝ π(η)
∏
j 6=i

tj(η) . (21)

Replacing π−i(η) = Pr(η|y−i, z−i with q−i(η) in Eq. (18)
gives us our EP approximation for the collapsed likelihood

`EP
i (zi) =

∫
Pr(yi | η, zi)q−i(η) dη . (22)

The integral can be calculated efficiently using the Kalman
filter by treating q−i(η) as the prior. This EP approximation
`EP
i to the collapsed likelihood `i is good when the posterior
π−i = Pr(η | y−i, z−i) is well approximated by q−i(η).

We now describe how to construct our likelihood approx-
imations ti for si. The standard EP update rule [7] is to
select ti to minimize the Kullback-Leibler divergence

ti = argmin
t̃i

KL
(
siq−i || t̃iq−i

)
. (23)

Since ti is a diagonal Gaussian, minimizing the KL-divergence
is equivalent to matching the marginal mean and variance
of the tilted density q̃i(η) = π−i(η)si(η). Therefore, we only
need to calculate the marginal densities of q̃i.

The marginal tilted density q̃i at time t can be efficiently
calculated by exploiting the conditional independence of η
and y given x (see Figure 1)

q̃i(ηt) =

∫
Pr(ηt|xi,t, xi,t−1)Pq(xi,t, xi,t−1|yi) dxi,tdxi,t−1 ,

(24)
where Pq(xi,t, xi,t−1|yi) is calculated using a Kalman smoother
with q−i(η) as the prior for η and where Pr(ηt|xi,t, xi,t−1) is

Pr(ηt|xi,t, xi,t−1) = N (ηt | (xi,t − aixi,t−1)/λi, σ
2
x) . (25)

The runtime complexity of this algorithm depends on the
complexity of its two steps: integrating over q−i in Eq. (22)
and updating tj in Eq. (23).

For the first step, integrating out q−i is equivalent to cal-
culating the likelihood of the dynamical model (4) where
η is distributed according to q−i. Since the state vector is
one dimensional, the Kalman filter takes O(T) time for each
cluster assignment zi = k; thus the first step takes O(TKN)
time.

For updating tj , each series i requires a one-dimensional
Kalman smoother step and a simple bivariate Gaussian in-
tegral (Eq. (24)). Therefore the second step takes O(TN)
time.

Altogether, the EP-based approximate sampler takesO(TKN)
per iteration.

3.2.3 Expectation Propagation with Subsampling
We can combine the previous two approximation methods

to obtain a third approximation for the collapsed likelihood
`i(zi).

EP simplifies the calculation by approximating complex
likelihood terms sj with a simpler form tj . This is in contrast
with the subsampling method, which makes no approxima-
tion on likelihood terms sj , but only uses a random subset
for computational tractability (ignoring the other terms).
Our EP and subsampling approach combines both meth-
ods: it approximates most terms with the EP tj , but selects
a random subset to be treated exactly like in subsampling.

Let J be a subset of {1, . . . , N}\{i}. Then our ‘EP with
subsampling’ approximation for the collapsed likelihood is

`EPsub
i (zi) ∝

∫
Pr(yi | η, zi)π(η)

∏
j∈J ,j 6=i

sj(η)
∏
j /∈J

tj(η) dη .

(26)
This integral is intractable to evaluate directly, but can be
calculated using the same conditional probability trick as in
our subsampling approach Eq. (16)

`EPsub
i (zi) =

PJ (yi, yJ)

PJ (yJ)
, (27)

but where PJ denotes the likelihood under the Kalman filter

treating q−J (η) as the prior for η.

q−J (η) ∝ π(η)
∏

j /∈J ,j 6=i

tj(η) . (28)

We can view this as incorporating the missing terms from
subsampling into the prior as if we applied Bayes rule twice:
first update on yj /∈ yJ , then update on yJ , where we ap-
proximate the intermediate posterior of η with the diagonal
Gaussian q−J (η).

This has the same runtime complexity as the subsampled
approximation, but with a little extra overhead for updating
tj and calculating q−J as in EP.

4. EXPERIMENTS
To assess the computational complexity and cluster as-

signment accuracy of our sampling methods, we perform
experiments on synthetic data from the model.

For simplicity, we consider synthetic data sets with K = 5
clusters, T = 100 data points per series, ai = 0.95, σ2

x =
1.0, and σ2

y = 1.0. Finally, we set α >> K so that the
K clusters would have roughly the same number of series.
We treat these parameters as known to focus on how our
approximations perform on inferring η and z.

We vary the number of series N and the factor loadings
λi in our experiments. The number of series N determines
the size of the data set. We set the factor loadings λi = ±λ∗
with equal probability. The tuning parameter λ∗ determines
the signal-to-noise (SNR) ratio of the data set: when λ∗ is
large, the series are more strongly correlated.

The five sampling methods we compare are:

• Naive Gibbs - includes sampling η1:K .

• Collapsed Gibbs

• Subsampled - our subsampled approximation with a
max subsample size M = 5.

• EP - our EP approximation, initializing tj = N (0, inf).

• EP-Subsampled - our combined EP and subsampling
approximation with a max subsample size M = 5.

4.1 Running Time Complexity
For our first experiment, we compare the running time of

each algorithm as a function of the data set size N , holding
λ∗ = 1 constant. Figure 4 plots the average running time
per iteration (sampling z) as a function of dataset size. The
error bars are one standard error replicated over 20 trials.
From Figure 4, it is clear that collapsed Gibbs scales super-
linearly, while the other four methods have linear scaling.
Figure 4 shows that collapsed Gibbs is intractable for large
data and is the motivation for considering faster samplers.

4.2 Approximation Accuracy
We measure the inference performance of the five sam-

pling methods by testing how quickly the sampled cluster
assignments ẑ approach the true cluster assignments z. We
initialize all five methods with the same random starting
points and average the results over 20 trials with N = 300
time series each.

To compare ẑ and z, we use normalized variation of infor-
mation (NVI), an information-theoretic metric for distance
between clusters [14]

NVI(ẑ, z) = 1− I(ẑ, z)/H(ẑ, z) , (29)

50 100 150 200 250 300 350 400 450 500
N

0

50

100

150

200

250
tim

e
pe

r
ite

ra
tio

n
(s

ec
on

ds
)

alg_type
EP
EP_subsampled5
collapsed
naive
subsampled5

Figure 4: Per iteration runtime (seconds) vs number of series
(N) for K = 5 groups

where I is mutual information and H is the joint entropy.
The NVI between two clusters is minimized at 0 when the
assignments are equal up to permutation and maximized at
1 when the mutual information between the two clustering
is zero.

We consider two settings of λ∗: a lower SNR setting λ2
∗ =

0.50 and a higher SNR setting λ2
∗ = 0.75. Because we are

assessing each method’s ability to recover the true cluster
assignments, we do not consider very low SNR settings.

Figure 5 depicts our results. The left column is the lower
SNR setting of λ2

∗ = 0.50 and the right column is the higher
SNR setting of λ2

∗ = 0.75. The first row of Figure 5 plots
the simulated data broken down by true cluster assignments
to provide a visualization of the challenge posed by the clus-
tering task.

The second row of Figure 5 shows the NVI of the sampled
cluster assignments to the true cluster assignments per it-
eration. In both SNR settings, Collapsed Gibbs and both
EP-based methods converge quickly towards the true cluster
assignment. The Naive Gibbs algorithm takes more itera-
tions to converge due to its slower mixing. Finally, the Sub-

sampled algorithm performs well in the higher SNR setting
(right), but performs poorly in the lower SNR setting (left).
The poor performance of Subsampled can be explained by
two factors: (i) the lower SNR setting makes subsampling
more challenging and (ii) its stationary distribution is more
diffuse than the true distribution.

The third row of Figure 5 presents the same NVI results
as the second row, but with the x-axis scaled by the average
running time per iteration of each algorithm. This figure
helps illustrate the trade-off between accuracy (y-axis) and
time (x-axis). From third row, it is clear that the EP-based
samplers outperform both Naive Gibbs (in accuracy) and
Collapsed Gibbs (in scalability/speed).

Finally, the fourth row is the same as the third row, but
zoomed-in on the lower right. We see that EP converges
quickly in both settings, but EP-Subsampled eventually ob-
tains a better NVI based on making a better approximation
in each sampling step. As a result, we see that selecting EP

versus EP-Subsampled represents an accuracy versus speed
tradeoff, as expected. That said, even the slower (but more
accurate) EP-Subsampled presents significant computational
gains over the naive or collapsed samplers. One thing left

to explore is the impact of these differences within the full
MCMC where all the model parameters are resampled. In
this context, the greater accuracy of EP-Subsampled could
be important. Likewise, the performance of Naive Gibbs

may be even worse relative to the comparison methods.

5. CONCLUSION AND FUTURE WORK
In this paper, we developed likelihood approximation meth-

ods to tractably infer the latent cluster assignments of cor-
related time series. We presented a model for multiple time
series that produces correlated clusters. We showed that the
existing collapsed Gibbs sampler is intractable for this task
due to the cubic scaling of its collapsed likelihood calcula-
tion. We developed three approximations methods for ap-
proximating this likelihood that scale only linearly with the
number of time series. This drastically reduces the runtime
in large datasets since the call to resample cluster assign-
ments is the majority of sampling steps and was previously
the bottleneck to scalability of the model. All other sam-
pling steps in [10] have negligible runtime in comparison.

We performed experiments on synthetic data focusing on
learning the cluster assignments. We found that our subsam-
pled approximation performs well in ‘easy’ settings where
the posterior is concentrated, but performs poorly in ‘hard’
settings due to the diffuseness of its stationary distribution.
On the other hand, our two EP-based approximations per-
formed well in all settings having comparable performance
per iteration with collapsed Gibbs, but scaling linearly in-
stead of cubically with the cluster size.

The next step is to analyze this approximation in a fully
Bayesian inference algorithm that learns all parameters.

Furthermore, although we applied our results using Gibbs
sampling, our collapsed likelihood approximation can be ex-
tended to other approximate Bayesian inference methods
such as stochastic variational inference. Additionally, we
are interested in applying similar EP-approximations to col-
lapsed likelihoods in other hierarchical models where the
observations are dependent after integrating out latent vari-
ables.

6. ACKNOWLEDGMENTS
We would like to thank Nick Foti, You “Shirley” Ren and

Alex Tank for helpful discussions.
This paper is based upon work supported by the NSF

Career Award IIS-1350133.

7. REFERENCES
[1] S. Aldor-Noiman, L. Brown, E. Fox, and R. Stine.

Spatio-temporal low count processes with application
to violent crime events. to appear in Statistica Sinica,
2016.

[2] D. Barber, A. T. Cemgil, and S. Chiappa. Inference
and estimation in probabilistic time series models.
Bayesian Time Series Models, 2011.

[3] C. M. Bishop. Pattern recognition. Machine Learning,
2006.

[4] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley.
Stochastic variational inference. The Journal of
Machine Learning Research, 14(1), 2013.

[5] T. W. Liao. Clustering of time series dataâĂŤa survey.
Pattern recognition, 38(11), 2005.

λ2
∗ = 0.50

15
10

5
0
5

10
15

15
10

5
0
5

10
15

15
10

5
0
5

10
15

15
10

5
0
5

10
15

0 20 40 60 80 100
15
10

5
0
5

10
15

λ2
∗ = 0.75

2015105
05

101520

2015105
05

101520

2015105
05

101520

2015105
05

101520

0 20 40 60 80 100
2015105

05
101520

0 5 10 15 20 25 30
Iter

0.0

0.2

0.4

0.6

0.8

1.0

N
V

I

alg_type
EP
EP_subsampled5
collapsed
naive
subsampled5

0 5 10 15 20 25 30
Iter

0.0

0.2

0.4

0.6

0.8

1.0

N
V

I

alg_type
EP
EP_subsampled5
collapsed
naive
subsampled5

100 200 300 400 500 600 700
Runtime

0.0

0.2

0.4

0.6

0.8

1.0

N
V

I

alg_type
EP
EP_subsampled5
collapsed
naive
subsampled5

100 200 300 400 500 600 700
Runtime

0.0

0.2

0.4

0.6

0.8

1.0

N
V

I

alg_type
EP
EP_subsampled5
collapsed
naive
subsampled5

200 250 300 350 400 450 500
Runtime

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

N
V

I

alg_type
EP
EP_subsampled5
collapsed
naive
subsampled5

200 250 300 350 400 450 500
Runtime

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

N
V

I

alg_type
EP
EP_subsampled5
collapsed
naive
subsampled5

Figure 5: Comparison of clustering performance between Naive Gibbs, Collapsed Gibbs, Subsampled, EP, and EP-Subsampled

on simulated data (top row, separated by true clustering) for λ2
∗ = 0.50 (left) and λ2

∗ = 0.75 (right). Comparisons show NVI
versus iteration (second row), NVI versus runtime (third row), and a zoom in of the tail of the runtime plot (fourth row).

[6] D. Maclaurin and R. P. Adams. Firefly monte carlo:
Exact mcmc with subsets of data. arXiv preprint
arXiv:1403.5693, 2014.

[7] T. P. Minka. Expectation propagation for approximate
bayesian inference. In Proceedings of the Seventeenth
conference on Uncertainty in artificial intelligence.
Morgan Kaufmann Publishers Inc., 2001.

[8] K. Palla, Z. Ghahramani, and D. A. Knowles. A
nonparametric variable clustering model. In Advances
in Neural Information Processing Systems, 2012.

[9] J. Quinonero-Candela and C. E. Rasmussen. A
unifying view of sparse approximate gaussian process
regression. The Journal of Machine Learning
Research, 6, 2005.

[10] Y. Ren, E. B. Fox, and A. Bruce. Achieving a
hyperlocal housing price index: Overcoming data
sparsity by bayesian dynamical modeling of multiple
data streams. arXiv preprint arXiv:1505.01164, 2015.

[11] Y. W. Teh, L. Hasenclever, T. Lienart, S. Vollmer,
S. Webb, B. Lakshminarayanan, and C. Blundell.
Distributed bayesian learning with stochastic
natural-gradient expectation propagation and the
posterior server. arXiv preprint arXiv:1512.09327,
2015.

[12] Y. W. Teh, D. Newman, and M. Welling. A collapsed
variational bayesian inference algorithm for latent
dirichlet allocation. In Advances in neural information
processing systems, 2006.

[13] D. A. Van Dyk and T. Park. Partially collapsed gibbs
samplers: Theory and methods. Journal of the
American Statistical Association, 103(482), 2008.

[14] N. X. Vinh, J. Epps, and J. Bailey. Information
theoretic measures for clusterings comparison:
Variants, properties, normalization and correction for
chance. The Journal of Machine Learning Research,
11, 2010.

[15] Y. Xiong and D.-Y. Yeung. Time series clustering
with arma mixtures. Pattern Recognition, 37(8), 2004.

